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• We consider the problem of selling multiple identical objects over two possible dates.
• We show that the seller optimally chooses to sell at both available dates.
• We provide conditions (and intuition) for selling most of the objects at the first date.
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a b s t r a c t

We consider the problem of a seller who owns K identical objects and N bidders each willing to buy at
most one unit. The seller may auction the objects at two different dates. Assuming that buyer valuations
are uniform and independent across periods, we show that the seller is better off by auctioning a positive
number of objects in each period. We also provide sufficient conditions such that most objects should be
auctioned at the first date or in the second date.

© 2018 Published by Elsevier B.V.

1. Introduction

Consider a seller who owns K identical objects andmust decide
how to auction them to a group of N bidders willing to buy at
most one unit. Suppose that the seller has a finite number of
opportunities (two in our model) to sell the objects. We compare
two different selling strategies: auction all N objects at once to
K bidders; and auction first X objects to K bidders, then N − X
to K − X bidders.2 Real-world situations where this problem is
relevant include auctions for treasury bills, radio spectrum, dairy
products, and electricity supply.3

If buyer valuations remain constant across periods (or if they
change but the relative ranking remains unchanged), then the

✩ We have benefited from the helpful comments of the Editor, a referee, Patrick
Rey, Steve Schwartz, Elmar Wolfstetter, and seminar participants at Humboldt
University, EEA/ESEM, the TSE.

∗ Corresponding author.
E-mail addresses: dsalant@auction-technologies.net (D.J. Salant),

luis.cabral@nyu.edu (L. Cabral).
1 Paganelli-Bull Professor of Economics and International Business, Stern School

of Business, New York University; and Research Fellow, CEPR.
2 We assume the seller must sell all K objects by the end of the second date.
3 See www.globaldairytrade.info/en/; Ito and Reguant (2014) and Joskow

(1997).

classic Martingale theorem suggests that the seller is indifferent in
how it divides the lots across auctions and periods. By contrast, we
show that, if buyer valuations change over time, then the seller is
better off by splitting its total assets into two different lots (i.e., 0 <

X∗ < K ): even if expected buyer valuations are the same in every
period, expected selling price is higher with sequential auctions.
Intuitively, what the seller cares for is not average valuation but
rather the average value of the K highest valuations; and this
order statistic is increasing in the number of valuation draws. In
other words, by increasing the number of auction dates, the seller
enlarges market size.

We next consider the optimal split of a seller’s assets across two
auctions. There are two effects at work here: a market size effect
and a strategic bidding effect. Consider first the market size effect:
since there are fewer bidders in the second auction (the winners
of the first auction drop out), the seller (a monopolist with limited
total capacity) will want tomaximize a quantity-weighted average
of the two auction prices, which would optimally bias the split
toward the first auction. Consider now the strategic bidding effect:
anticipating the option of waiting for the second auction, whether
buyers should shade their bids during the first auction depends on
expected prices in the two auctions which will also bias the seller
toward the first auction (except with K/N is large). Accordingly,
the seller should optimally bias the split toward the first auction
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so as to mitigate bidder incentives toward waiting for the second
auction.

If the number of objects is very small with respect to the
number of bidders, then bid shading is small, themarket-size effect
dominates, and X∗ > K/2, that is, the seller is better off by selling
most units during the first auction. By contrast, as K → N , the
option value of waiting is very high and bidding in the first auction
non-aggressive. Accordingly, X∗ > K/2, that is, the seller is better
off by selling most units during the second auction.

This paper builds off several strands of literature: sequential
auctions (e.g., Weber, 1983; Ashenfelter, 1989; De Silva et al.,
2005; Donald et al., 2006; Hörner and Samuelson, 2011; Said, 2011,
2012); multi-unit auctions (e.g., McAdams, 2006, Back and Zender,
2001, LiCalzi and Pavan, 2005, Lengwiler, 1999); dynamic mech-
anism design (Garrett, 2017; Ely et al., 2017). Despite a variety of
similarities, we are the first – to the best of our knowledge – to
consider the problem of sequential auctions with changing buyer
valuations.

2. Model and results

Consider a seller who owns K identical objects for which it
has no value; and suppose there are N > K bidders interested
in at most one of the objects. Consistent with observed practice,
we assume all auctions are run as generalized Vickrey auctions:
whenever n objects are auctioned to m > n bidders, the n highest
bids are allocated the objects and pay a price equal to the n + 1st
bid.4

There are two periods, t = 1 and t = 2. In each period, Nature
generates bidder valuations vi, i = 1, . . . ,N , conditional on the
bidder not having yet obtained an object. Specifically,

Assumption 1. First- and second-period values, vi1 and vi2, are
independent and uniformly distributed: vit ∼ U[0, 1], t = 1,2.

(If a bidder purchases at t = 1, then its valuation at t = 2 is
equal to zero.)5

The seller must decide how to distribute the K objects along
two auction periods. Let X be the number of objects auctioned at
t = 1.We assume the product being auctioned is perishable, or has
limited shelf life, and so if the seller decides to auction X objects
at t = 1 (where X ∈ {1, . . . , K }), then the seller must auction
K −X objects at t = 2.6 Total expected revenue from auctioning K
objects over two auctions is given by

R(X) = X E(p1) + (K − X)E(p2)

where pt is equilibrium price at time t and E is the expected value
operator. We begin with a result that characterizes the expected
revenue function R(X):

Lemma 1. Under Assumption 1, the seller’s expected revenue is given
by

R(X) =max
{
0, X

(
N − X − 1

N + 1
−

(K − X) (K − X + 1)
2 (N − X) (N − X + 1)

)}
+ (K − X)

N − K − 1
N − X + 1

(1)

where each of the two terms on the RHS represent expected revenue
in the first and in the second period, respectively.

4 We assume a zero reserve price.
5 Generally, we would expect a positive but less than perfect correlation; our

choice of independence is essentially justified by expediency.
6 This is the case in both energy procurement and of auctions of perishable but

storable commodities (e.g., Fonterra’s global dairy trade (GDT) auctions).

Fig. 1. Optimal X/K when N → ∞.

Next we show that selling all K units in one auction results in
(strictly) lower expected revenues than selling at least one unit in
each auction.Wewill consider the casewhen the value ofN is large
and make the following assumption:

Assumption 2. 0 < lim
N→∞

K
N

< 1

Let X∗ be the revenue-maximizing value of X . Our first main
result is that it is optimal for the seller to use both auction periods.

Proposition 1. There exists N ′ > 0 such that, if N > N ′, then
0 < X∗ < K

Having established that it is optimal to sell someobjects at t = 1
and at t = 2, we next address the question of the relation between
X and K/2: should the seller offer most objects at t = 1 or at
t = 2?7

Proposition 2. There exist N ′ > 0 and 0 < α′ < α′′ < 1 such that,
if N > N ′ and K/N < α′ (resp. K/N > α′′), then X∗ > K/2 (resp.
X∗ < K/2).

Fig. 1 illustrates Propositions 1 and 2. It depicts the optimal X/K
as a function of K/N when N → ∞. First, notice that X/K ∈ (0, 1)
for all values of K/N ∈ [0, 1] (Proposition 1). Second, X/K > 1

2 —
that is, it is optimal to sell most of the objects at t = 1— if and only
if K/N is not too large. The intuition is that there are two opposite
effects when it comes to the optimal value of X: amarket size effect
and a strategic bidding effect. Suppose first that bidders aremyopic,
that is, do not take into account at t = 1 the option value ofwaiting
until t = 2. Then thedifference between auctions is that the second
has a lower number of potential bidders. This market size effect
implies that, at the margin, average price is higher when more
objects are sold, that is, at t = 1. This is analogous to a monopolist
with limited capacity selling in two markets with linear demands
that have the same vertical-axis intercept and differ only in their
horizontal-axis intercept: the optimal division of capacity is to sell
more in the market with higher demand.

However, consumers are not myopic: when they bid at t = 1
they take into account the option value of waiting until t = 2. This
option value leads buyers to shade their bids at t = 1, as shown
earlier. Continuing with the example of a monopolist with limited
capacity, this is equivalent to a downward shift in the demand
curve in one of themarkets. If the number of bidderswere the same
in both periods, then this would imply a lower optimal price (and
output level) in the first market.

7 If K/N < 2, then we have a more direct proof of Proposition 1. We also have a
version of Proposition 1 which dispenses with the large N assumption but imposes
limits on K/N .
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If the number of objects is very smallwith respect to thenumber
of bidders (low K/N), then the market size effect dominates. By
contrast, if the number of objects is very large with respect to the
number of bidders (high K/N), then the strategic bidding effect
dominates.

Appendix

Proof of Lemma 1. Let X be the number of objects put up for
auction (and sold) at t = 1. At t = 2, N − X bidders compete
for Y = K − X units. The K − X highest-value bidders win this
auction and pay a price equal to the (K − X + 1)th highest bid.
Since bidders bid their valuation, this corresponds to the (N −X)−
(K − X) = (N − K )th order statistic of the set of bidder valuations.
From Sections 25.3 and 26.4 of Johnson et al. (1995), the expected
value of this statistic, which is therefore the expected value of the
second-auction price, is given by

E(p2) =
N − K − 1
N − X + 1

(2)

Suppose a bidder has the ith highest bid in the second auction; and
suppose that it is a winning bid, that is, i ≤ K − X . The expected
surplus from winning the auction as the ith bidder is given by the
expected value of the difference between the ((N − X)− (i− 1))th
and the (N − K )th order statistic. From Sections 25.3 and 26.4
of Johnson et al. (1995), this is given by

E
(
vi − vK−X+1

)
=

K − X + 1 − i
N − X + 1

The average value of i, conditional on being a winning bidder, is
given by ((K − X) + 1)/2. Substituting into the above equation,
and multiplying by (K − X)/(N − X) (the probability of being a
winning bidder in the second period), we get the expected surplus
from participating in the second auction. It is given by

E(s2) =
(K − X) (K − X + 1)
2 (N − X) (N − X + 1)

(3)

In the first-period auction, were it not for the opportunity value
of bidding in the second auction, the X highest bids (the winning
bids)would pay a price equal to the (X+1)th highest bid, that is, the
N − X order statistic of bids (or valuations). Given the opportunity
of bidding in the second auction, all of these bids are shaded by
E(s2). This implies an expected first-period price of

E(p1) =
N − X − 1

N + 1
− E(s2) (4)

where E(s2) is given by (3). The seller’s problem is to maximize
overall expected revenue, which is given by

R(X) = X E(p1) + (K − X)E(p2)

where E(p1) is given by (4) and E(p2) is given by (2). Finally, we
must require that auctionprice in the first period bepositive,which
explains the min function in the result. ■

Proof of Proposition 1. Suppose that seller revenue during the
first period is strictly positive (an assumption we will confirm
later). Then from Lemma 1,

R(X) = X
(
N − X − 1

N + 1
−

(K − X) (K − X + 1)
2 (N − X) (N − X + 1)

)
+ (K − X)

N − K − 1
N − X + 1

It follows that (since N > 0)

R(X)/N = (X/N)
(
1 − X/N − 1/N

1 + 1/N

−
(K/N − X/N) (K/N − X/N + 1/N)

2 (1 − X/N) (1 − X/N + 1/N)

)
+ (K/N − X/N)

1 − K/N − 1/N
1 − X/N + 1/N

(5)

Since N is exogenously given, maximizing R(X) or maximizing
R(X)/N yields the same result. Define

a ≡ X/K
b ≡ K/N (6)

In words, b is a parameter indicating the ratio of the number of
objects to the number of bidders, where we note that, by Assump-
tion 2, in the limit as N → ∞, b ∈ (0, 1). The value of a, in turn, is a
sufficient statistic of the choice variable X: it indicates the fraction
of objects to sell at t = 1. Our goal is therefore to establish that
a ∈ (0, 1), that is, the seller is better off by using the two sell dates.
Before continuing, note that

X/N = a b (7)

Substituting (6) and (7) into (5)

R(X)/N = a b
(
1 − a b − 1/N

1 + 1/N
−

(b − a b) (b − a b + 1/N)
2 (1 − a b) (1 − a b + 1/N)

)
+ (b − a b)

1 − b − 1/N
1 − a b + 1/N

Define

r(a, b) ≡ lim
N→∞

R(X)/N

= a b
(
1 − a b

1
−

(b − a b) (b − a b)
2 (1 − a b) (1 − a b)

)
+ (b − a b)

1 − b
1 − a b

= a b (1 − a b) −
a b3 (1 − a)2

2 (1 − a b)2

+ b (1 − a) (1 − b)/(1 − a b) (8)

We now show that the value of a that maximizes r(a, b) is strictly
between 0 and 1. Since r(a, b) results from the sum, multiplication
and division of polynomials and denominators are different from
zero (because b ∈ (0, 1)), we conclude that r(a, b) is continuous
and differentiable. Computation establishes that

dr/da |a=0 = b2
(
2 −

3
2 b

)
> 0

where the inequality follows from b ∈ (0, 1). Given continuity and
Taylor’s theorem, we conclude that, in the neighborhood of a = 0,
r(a, b) is strictly increasing in a. This implies that R(1) > R(0).
Moreover, since R(K ) = R(0) we conclude that R(1) > R(K ) as well.

Finally, we need to show that, as assumed above, the constraint

X
(
N − X − 1

N + 1
−

(K − X) (K − X + 1)
2 (N − X) (N − X + 1)

)
> 0

is not binding; or, equivalently (in the N → ∞ limit),

a b (1 − a b) −
a b3 (1 − a)2

2 (1 − a b)2
> 0 (9)

At a = 0, the left-hand side of (9) equals zero. Moreover, the
derivative of the left-hand side with respect to a, evaluated at
a = 0, is equal to b

(
1 − b2/2

)
, which is strictly positive since

b ∈ (0, 1). This confirms our assumption that first-period price is
positive. ■

Proof of Proposition 2. Suppose that seller revenue during the
first period is strictly positive (an assumption we will confirm
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later). Define

fn(a) ≡
dn (dr/da)

dbn

⏐⏐⏐⏐
b=0

where r is defined by (8) and f0(a) is simply dr/da. Computation
establishes that

f0 = 0
f1 = 0
f2 = 4 − 8 a

f3 = 36 a − 27 a2 − 9

Continuity and Taylor’s theorem imply that, in the neighborhood
of b = 0, the optimal value of a lies in the neighborhood of a =

1
2 .

Moreover, f3
( 1
2

) 9
4 > 0. Continuity and Taylor’s theorem imply

that, in the neighborhood of b = 0, the optimal value of a is strictly
increasing in b. We still need to confirm that our assumption that
the first-period price is positive is justified. Substituting a =

1
2 into

the left-hand side of (9) we get(
a b (1 − a b) −

a b3 (1 − a)2

2 (1 − a b)2

) ⏐⏐⏐⏐
a= 1

2

=
1
4
8 − 4 b + b2

4 − 4 b + b2
b (1 − b)

which is strictly positive for b ∈ (0, 1). It follows that it is strictly
greater than 1

2 .
Further computation establishes that

dr
da

⏐⏐⏐⏐
b=1

=
1
2 − 2 a

which implies a =
1
4 . We still need to confirm that our assumption

that the first-period price is positive is justified. Substituting a =
1
4

into the left-hand side of (9) we get(
a b (1 − a b) −

a b3 (1 − a)2

2 (1 − a b)2

) ⏐⏐⏐⏐
a= 1

4

=
b(

1 −
1
4 b

)2 (
1
4

−
3
16

b −
3

128
b2 −

3
256

b3
)

The first term on the right-hand side is positive for all b ∈ (0, 1).
The second term is positive for b = 1 and strictly decreasing in b
for b ∈ (0, 1). It follows that, in the neighborhood of a =

1
4 , first

period price is strictly positive for all b ∈ (0, 1), as assumed. Finally,
the result follows by continuity. ■
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